# Two New Eremophilenolides from Cacalia pilgeriana

Er Wei LI, Kun GAO\*, Zhong Jian JIA\*

College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

**Abstract:** Two new eremophilenolides,  $1\beta$ -hydroxy- $2\beta$ -methylsenecioyloxyeremophil-7 (11)-en- $8\beta$  (12)-olide (1),  $1\beta$ -hydroxy- $2\beta$ -methylsenecioyloxy- $8\alpha$ -methoxyeremophil-7 (11)-en- $8\beta$  (12)-olide (2), were isolated from the roots of *Cacalia pilgeriana*. Their structures were elucidated by spectroscopic methods and X-ray diffraction analysis.

Keywords: Cacalia pilgeriana, Compositae, eremophilenolide.

Phytochemically, the genus *Cacalia* was characterized by containing eremophilenolide sesquiterpenes<sup>1-3</sup>. We previously reported two new *ent*-kaurenoids isolated from the roots of *Cacalia pilgeriana* (Diels) Ling<sup>4</sup>. Further study has provided two new eremophilenolides **1** and **2**.



Compound **1** was obtained as white prisms from acetone, m.p.  $162-164^{\circ}C$ ,  $[\alpha]_{D}^{21}-120$  (*c* 0.6, CHCl<sub>3</sub>). The molecular formula of **1** was determined as C<sub>21</sub>H<sub>30</sub>O<sub>5</sub> by HRESIMS [M+H]<sup>+</sup> at *m*/*z* 363.2156 (calcd. 363.2166). Its IR absorptions indicated the presence of a hydroxyl group (3356 cm<sup>-1</sup>) and an  $\alpha$ ,  $\beta$ -unsaturated  $\gamma$ -lactone unit (1745 cm<sup>-1</sup>). The signals of  $\delta_{H}$  5.67 (tq, 1 H, J = 1.2, 1.2 Hz, H-2'), 2.18 (dq, 2 H, J = 1.2, 7.5 Hz, H-4'), 1.08 (t, 3H, J = 7.5 Hz, H-5'), 2.18 (d, 3H, J = 1.2 Hz, H-6') and  $\delta_{C}$  166.9 (s, C-1'), 113.8 (d, C-2'), 163.5 (s, C-3'), 33.7 (t, C-4'), 11.8 (q, C-5'), 18.8 (q, C-6') in its <sup>1</sup>H and <sup>13</sup>C

<sup>\*</sup> E-mail:jiazj@lzu.edu.cn,miaozm@lzu.edu.cn

### Er Wei LI et al.

NMR spectra (**Table 1**) displayed the presence of a methylsenecioyloxy group<sup>5</sup>, which was also confirmed by the  $C_6H_{10}O_2$  unit in the fragment ion peaks at m/z 248 [M-114  $(C_6H_{10}O_2)]^+$  and 97 [ $(C_6H_{10}O_2)$ -OH]<sup>+</sup> in its EIMS<sup>6</sup>. Except for six carbons of a methylsenecioyloxy group, the <sup>13</sup>C NMR spectra of **1** showed 15 carbon signals for three methyls, three methylenes, five methylines including three oxygenated carbons, four quaternary carbons including one carbonyl carbon and two olefinic carbons, indicating a sesquiterpene skeleton with an  $\alpha$ ,  $\beta$ -unsaturated  $\gamma$ -lactone unit and in agreement with an eremophil-7(11)-en-8(12)-olide<sup>1-3</sup> structure type. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum confirmed the presence of the fragment of CH<sub>3</sub> (15)-CH (4)-CH<sub>2</sub> (3)-CH (2)-CH (1)-CH (10)-CH<sub>2</sub> (9), and C-1, C-2 were oxygenated. The methylsenecioyloxy group was deduced to be located at C-2 by the cross-peak  $\delta_{C-1'}$  166.9/ $\delta_{H-2}$  5.21 in the HMBC spectrum. The relative stereochemistry of **1** was finally determined by the X-ray diffraction analysis. So compound **1** was identified as  $1\beta$ -hydroxy- $2\beta$ -methyl-senecioyloxyeremophil-7 (11)-en-8 $\beta$  (12)-olide.

| No. | 1 $\delta_{\rm H} J ({\rm Hz})$ | 2 $\delta_{\rm H} J ({\rm Hz})$ | 1 δ <sub>C</sub> | <b>2</b> δ <sub>C</sub> |
|-----|---------------------------------|---------------------------------|------------------|-------------------------|
| 1   | α 3.84 (dd, 3.6, 4.5)           | α 4.18 (dd, 3.0, 7.2)           | 68.2 d           | 68.0 d                  |
| 2   | α 5.21 (d, 3.6)                 | α 5.20 (d, 3.0)                 | 71.6 d           | 71.6 d                  |
| 3   | α 2.08 (m) β 1.98 (m)           | 2.01 (m)                        | 31.1 t           | 31.1 t                  |
| 4   | α 1.61 (tq, 5.7, 6.9)           | 1.62 (tq, 3.9, 7.5)             | 36.9 d           | 37.3 d                  |
| 5   | -                               | -                               | 40.5 s           | 41.3 s                  |
| 6   | α 2.64 (dd, 1.2, 14.4)          | α 2.58 (dd, 1.2, 13.5)          | 28.5 t           | 31.3 t                  |
|     | β 2.20 (d, 14.4)                | β 2.10 (d, 13.5)                |                  |                         |
| 7   | -                               | -                               | 161.8 s          | 157.8 s                 |
| 8   | α 4.92 (dd, 7.8, 9.6)           | -                               | 77.4 d           | 105.8 s                 |
| 9   | 2.86 (ddd, 2.1, 6.0, 12.6)      | 2.88 (d, 14.7)                  | 34.5 t           | 33.8 t                  |
|     | 1.42 (dt, 3.9, 12.6)            | 1.73 (dd, 5.0, 14.7)            |                  |                         |
| 10  | β 2.04 (m)                      | 1.94 (dd, 5.0, 7.2)             | 38.4 d           | 38.5 d                  |
| 11  | -                               | -                               | 122.3 s          | 126.5 s                 |
| 12  | -                               | -                               | 174.8 s          | 171.6 s                 |
| 13  | 1.80 (d, 1.2)                   | 1.85 (d, 1.2)                   | 8.0 q            | 8.1 q                   |
| 14  | 0.88 (s)                        | 0.88 (s)                        | 24.3 q           | 23.7 q                  |
| 15  | 1.12 (d, 6.9)                   | 1.11 (d, 6.9)                   | 18.1 q           | 18.6 q                  |
| 1'  | -                               | -                               | 166.9 s          | 166.7 s                 |
| 2'  | 5.67 (tq, 1.2, 1.2)             | 5.66 (tq, 1.2, 1.2)             | 113.8 d          | 114.0 d                 |
| 3'  | -                               | -                               | 163.5 s          | 163.1 s                 |
| 4'  | 2.18 (dq, 1.2, 7.5)             | 2.19 (dq, 1.2, 7.2)             | 33.7 t           | 33.7 t                  |
| 5'  | 1.08 (t, 7.5)                   | 1.08 (t, 7.2)                   | 11.8 q           | 11.8 q                  |
| 6'  | 2.18 (d, 1.2)                   | 2.17 (d, 1.2)                   | 18.8 q           | 18.8 q                  |
| MeO | -                               | 3.21 (s)                        | -                | 50.2 q                  |

**Table 1** <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C NMR (100 MHz) data of **1** and **2** (CDCl<sub>3</sub>, TMS,  $\delta$  ppm)

Compound **2** was yielded as colorless needles from acetone, m.p. 138-140°C,  $[\alpha]_{D}^{24}$ -152 (*c* 3.8, CHCl<sub>3</sub>). The molecular formula of **2** was determined as C<sub>22</sub>H<sub>32</sub>O<sub>6</sub> by HRESIMS [M+Na]<sup>+</sup> at *m/z* 415.2082 (calcd. 415.2092). Its NMR spectra (**Table 1**) were extremely similar to those of **1** except the proton of C-8 was substituted by a methoxy group, which could be confirmed by the cross-peak  $\delta_{C-8}$  105.8/ $\delta_{H}$  3.21 in the HMBC spectrum. The eremophilane derivatives isolated from the genus *Cacalia* and *Ligularia* were the *cis*-fused A/B ring system<sup>1-3,7,8</sup>, so the proton of C-10 was in the

## 1232 Two New Eremophilenolides from *Cacalia pilgeriana*

 $\beta$ -configuration. Furthermore, difference NOE spectrum of **2** showed that the H-2 signal had a clear enhancement (8.1%) irradiating H-1, but the H-10 signal had no change. Thus H-1 and H-2 were in the  $\alpha$ -configuration and the substituents at C-1 and C-2 were in the  $\beta$ -configuration. Naya *et al.* reported that for 8 $\alpha$ -methoxyere-mophilenolide derivatives the C-15 doublet methyl is downfield from the C-14 singlet methyl and the chemical shifts are reversed in the 8 $\beta$ -series<sup>9, 10</sup>. Compound **2** showed the presence of signals at  $\delta_{\rm H}$  1.11 (d, J = 6.9 Hz, Me-15) and  $\delta_{\rm H}$  0.88 (s, Me-14). Thus **2** was deduced as 1 $\beta$ -hydroxy-2 $\beta$ -methylsenecioyloxy-8 $\alpha$ -methoxyeremophil-7 (11)-en-8 $\beta$  (12)-olide.

#### Acknowledgments

This work was supported by the NNSFC (No.29972017 and No. 20021001-QT Program).

#### References

- 1. S. M. Zhang, G. L. Zhao, R. Li, et al., Phytochenistry, 1998, 48 (3), 519.
- 2. M. J. Mao, Z. J. Jia, Planta Medica, 2002, 68 (1), 55.
- 3. M. J. Mao, Z. D. Yang, Z. J. Jia, Planta Medica, 2003, 69 (8), 745.
- 4. E. W. Li, K. Gao, Z. J. Jia, et al., Chin. Chem. Lett., 2004, in press.
- E. W. Li, K. Gao, Z. J. Jian, et al., China Chimic Linea Chimica Sinica, 1987, 45, 450.
  B. P. Ying, P. M. Yang, R. H. Zhu, Acta Chimica Sinica, 1987, 45, 450.
- 6. C. D. Wang, et al., Acta Pharm. Sinica, 1989, 24 (12), 913.
- 7. W. S. Wang, K. Gao, Z. J. Jia, J. Nat. Prod., 2002, 65 (5), 714.
- 8. X. Q. Li, K. Gao, Z. J. Jia, *Planta Medica*, **2003**, *69* (4), 356.
- 9. K. Naya, R. Kanazawa, M. Sawada, Bull. Chem. Soc. Jpn., 1975, 48 (11), 3220.
- 10. K. Naya, N. Nogi, Y. Makiyama, et al., Bull. Chem. Soc. Jpn., 1977, 50 (11), 3002.

Received 13 December, 2004